Answer:
The statement [tex]p\rightarrow (q\rightarrow p)[/tex] is a tautology.
[tex]p\rightarrow (q\rightarrow p)\equiv \lnot p\lor (q\rightarrow p) \equiv \lnot p\lor (\lnot q\lor p) \equiv (p\lor \lnot p) \lor \lnot q \equiv T \lor \lnot q \equiv T[/tex]
Step-by-step explanation:
We have the following statement:
[tex]p\rightarrow (q\rightarrow p)[/tex]
To reduce the statement to a tautology we need to use the table of logical equivalences as follows:
[tex]p\rightarrow (q\rightarrow p)\equiv[/tex]
[tex]\equiv \lnot p\lor (q\rightarrow p)[/tex] by the the logical equivalence involving conditional statement.
[tex]\equiv \lnot p\lor (\lnot q\lor p)[/tex] by the the logical equivalence involving conditional statement.
[tex]\equiv (p\lor \lnot p) \lor \lnot q[/tex] by the Associative law.
[tex]\equiv T \lor \lnot q[/tex] by the Negation law.
[tex]\equiv T[/tex] by the Domination law.