Respuesta :

Answer:

Step-by-step explanation:

We have the function

[tex] u(x,t) = \cos(a\pi x)e^{-a^2\pi^2t}[/tex],

while the heat equation in one spacial dimension is

[tex]\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial^2 x} [/tex].

So, to solve this exercise we only need to calculate the derivatives that appears in the equation. Let us start by the derivative with respect to t:

[tex]\frac{\partial u}{\partial t} (x,t) = -a^2\pi^2\cos(a\pi x)e^{-a^2\pi^2t}[/tex].

In the other hand

[tex]\frac{\partial u}{\partial x} (x,t) =-a\pi\sin(a\pi x)e^{-a^2\pi^2t}[/tex],

then

[tex]\frac{\partial^2 u}{\partial^2 x} (x,t) =-a^2\pi^2\cos(a\pi x)e^{-a^2\pi^2t}[/tex] .

Notice that,

[tex]-a\pi\sin(a\pi x)e^{-a^2\pi^2t}=-a\pi\sin(a\pi x)e^{-a^2\pi^2t}[/tex]

So, the function [tex]u[/tex] satisfies the heat equation with [tex]k=1[/tex] on any interval [0,L].