Answer:
[tex]\alpha = 0.305 rad/s^2[/tex]
Explanation:
initial frequency of revolution is given as
[tex]f_1 = 100/3 rpm[/tex]
now initial angular speed is
[tex]\omega_i = 2\pi f[/tex]
[tex]\omega_i = 2\pi(\frac{100}{3\times 60})[/tex]
[tex]\omega_i = 3.49 rad/s[/tex]
Similarly final angular speed is given as
[tex]\omega_f = 2\pi f_2[/tex]
[tex]\omega_f = 2\pi(\frac{45}{60})[/tex]
[tex]\omega_f = 4.71 rad/s[/tex]
Now angular acceleration is given as
[tex]\alpha = \frac{\omega_f - \omega_i}{\Delta t}[/tex]
[tex]\alpha = \frac{4.71 - 3.49}{4}[/tex]
[tex]\alpha = 0.305 rad/s^2[/tex]