Respuesta :

Answer:

[tex]\Delta E=E_{final}-E_{initial}[/tex]

[tex]\Delta E=-1312[\frac{1}{(n_f^2)}-\frac {1}{(n_i^2 )}]KJ mol^{-1}[/tex]

[tex]\Delta E=-1312[\frac{1}{3^2)}-\frac {1}{(1^2 )}]KJ mol^{-1}[/tex]

[tex]\Delta E=-1312[\frac{1}{(9)}-\frac {1}{(1 )}]KJ mol^{-1}[/tex]

[tex]\Delta E=-1312[0.111-1]KJ mol^{-1}[/tex]

[tex]\Delta E=1166 KJ mol^{-1}[/tex]

[tex]\frac{=1166,000 \mathrm{J}}{6.022 \times 10^{23} \text { photons }}[/tex]

[tex]=193623 \times 10^{-23}  \frac {J}{photon}[/tex]

[tex]\Delta E=1.93623 \times 10^{-18}  \frac {J}{photon}[/tex]

[tex]\Delta E=\frac {h\times c}{\lambda} \\\\=\frac {(6.626\times 10^{-34} J s \times 3 \times 10^8 ms^{-1})}{\lambda}[/tex]

h is planck's constant  

c is the speed of light

λ is the wavelength of light  

[tex]\lambda =\frac {h\times c}{\Delta E}\\\\=\frac {(6.626\times10^{-34} J s\times3 \times 10^8 ms^{-1})}{(1.93623\times10^{-18}  J/photon)}[/tex]

Wavelength

[tex]\lambda =10.3 \times 10^{-8} m \times \frac {(10^9 nm)}{1m}  =103 nm (Answer)[/tex]

Thus, the wavelength of light associated with the transition from n=1 to n=3 in the hydrogen atom is 103 nm.