Answer:
[tex]v_s=7.66066838m/s[/tex]
Explanation:
We need to use the doppler effect equation:
[tex]f_o=\frac{(v\pm v_o)}{(v\pm v_s)}*f_s[/tex]
Where:
[tex]f_s=Source\hspace{1 mm} frequency=840Hz[/tex]
[tex]f_o=Observed\hspace{1 mm} frequency=778Hz[/tex]
[tex]v=Speed\hspace{1 mm}of\hspace{1 mm}the\hspace{1 mm}sound=340m/s[/tex]
[tex]v_o=Velocity\hspace{1 mm}of\hspace{1 mm}the\hspace{1 mm}observer=18m/s[/tex]
[tex]v_s=Velocity\hspace{1 mm}of\hspace{1 mm}the\hspace{1 mm}source[/tex]
In this case, we can assume that the observer is moving away from the source and the source is moving towards the observer, then:
[tex]f_o=\frac{(v-v_o)}{(v-v_s)}*f_s[/tex]
Isolating [tex]v_s[/tex]
[tex]v_s=v-\frac{f_s}{f_o}*(v-v_o)[/tex] (1)
Replacing the data provided in (1)
[tex]v_s=340-\frac{840}{778}*(340-18)=-7.66066838m/s[/tex]
The minus in the result is actually telling us that the source is really moving away from the observer.