Explanation:
Let the molar mass of KBr is [tex]M_{1}[/tex] and NaBr is [tex]M_{2}[/tex].
In 21.545 g, the moles of KBr and NaBr are [tex]n_{1}[/tex] and [tex]n_{2}[/tex].
Therefore, [tex]M_{1} \times n_{1} + M_{2} \times n_{2}[/tex] = 21.545 g
[tex]n_{2} = \frac{21.545 g - M_{1} \times n_{1}}{M_{2}}[/tex]
Mass of AgBr is 35.593 g.
[tex](M_{Ag} + M_{Br})(n_{1} + n_{2})[/tex] = 35.593 g
[tex](M_{Ag} + M_{Br})n_{1} + (M_{Ag} + M_{Br})n_{2}[/tex] = 35.593 g
[tex]M_{AgBr} + (M_{Ag} + M_{Br})\frac{21.545 g - M_{1} \times n_{1}}{M_{2}}[/tex] = 35.593 g
[tex]n_{1} = \frac{35.593 g \times M_{2} - M_{AgBr} \times 21.545 g}{M_{AgBr} (M_{2} - M_{1})}[/tex]
Now, putting the given values into the above formula as follows.
[tex]n_{1} = \frac{35.593 g \times M_{2} - M_{AgBr} \times 21.545 g}{M_{AgBr} (M_{2} - M_{1})}[/tex]
[tex]n_{1} = \frac{35.593 g \times 102.894 g/mol - 187.7722 g/mol \times 21.545 g}{187.7722 g/mol (109.894 g/mol - 119.002 g/mol)}[/tex]
= [tex]\frac{3662.306 - 4045.552}{-1710.229} mol[/tex]
= [tex]\frac{383.246}{1710.229} mol[/tex]
= 0.224 mol
Hence, mass of KBr will be calculated as follows.
[tex]0.224 mol \frac{119.002 g}{1 mol}[/tex]
= 26.656 g
Thus, we can conclude that mass of KBr present in the original mixture is 26.656 g.