What is the equation of the line that is perpendicular to the given line and has an x-intercept of 6?


y = –Three-fourthsx + 8

y = –Three-fourthsx + 6

y = Four-thirdsx – 8

y = Four-thirdsx – 6

Respuesta :

Correct Answer: C. y = Four-thirdsx – 8

Answer:

[tex]y=\dfrac{4}{3}x-8[/tex]

Option 3 is correct

Step-by-step explanation:

To find: The equation of perpendicular to given line and has x-intercept 6

x-intercept is on x-axis where y value is 0.

Therefore, x-intercept: (6,0)

Now we will check each point for each option.

Option 1: [tex]y=-\dfrac{3}{4}x+8[/tex]

Put x=6, y=0

[tex]0=-\dfrac{3}{4}\cdot 6+8[/tex]

[tex]0\neq\dfrac{7}{2}[/tex]

False

Option 2: [tex]y=-\dfrac{3}{4}x+6[/tex]

Put x=6, y=0

[tex]0=-\dfrac{3}{4}\cdot 6+6[/tex]

[tex]0\neq\dfrac{3}{2}[/tex]

False

Option 3: [tex]y=\dfrac{4}{3}x-8[/tex]

Put x=6, y=0

[tex]0=\dfrac{4}{3}\cdot 6-8[/tex]

[tex]0=0[/tex]

True

Option 1: [tex]y=\dfrac{4}{3}x-6[/tex]

Put x=6, y=0

[tex]0=\dfrac{4}{3}\cdot 6-6[/tex]

[tex]0\neq2[/tex]

False

Hence, The perpendicular equation is [tex]y=\dfrac{4}{3}x-8[/tex]