Using Cramer's Rule, what is the value of y in the solution to the system of linear equations below?
9x-2y - 5
-3x-4y=-4

Using Cramers Rule what is the value of y in the solution to the system of linear equations below 9x2y 5 3x4y4 class=

Respuesta :

Answer:

The second choice.

Step-by-step explanation:

We first write the system of equations as an augmented matrix:

[tex]\left(\begin{array}{cc|c} 9 & -2 & 5\\ -3 & -4 & -4 \end{array}\right)[/tex]

Then we take the determinant [tex]D[/tex] of the left side:

[tex]D=\begin{vmatrix}9 & -2 \\ -3 & -4 \\ \end{vmatrix} =(9)(-4)-(-2)(-3)=-42[/tex]

Now the solution of [tex]y[/tex] in the system is

[tex]y=\frac{D_y}{D}[/tex]

where [tex]D_y[/tex] is  the determinant of the matrix formed by replacing [tex]y[/tex] column of the left matrix with elements of the right matrix [tex](5, -4)[/tex]:

[tex]D_y=\begin{vmatrix}9 & 5 \\ -3 & -4 \\ \end{vmatrix}=(9)(-4)-(5)(-3)=-21[/tex]

therefore,

[tex]y=\frac{\begin{vmatrix}9 & 5 \\ -3 & -4 \\ \end{vmatrix}}{D}[/tex]

[tex]\boxed{y=\frac{\begin{vmatrix}9 & 5 \\ -3 & -4 \\ \end{vmatrix}}{-42} =\frac{-21}{-42} =\frac{1}{2}}[/tex]

which is the second choice.

Answer:

The answer is B!

Step-by-step explanation:

Edge 2021 :)