Respuesta :
Answer:
The second choice.
Step-by-step explanation:
We first write the system of equations as an augmented matrix:
[tex]\left(\begin{array}{cc|c} 9 & -2 & 5\\ -3 & -4 & -4 \end{array}\right)[/tex]
Then we take the determinant [tex]D[/tex] of the left side:
[tex]D=\begin{vmatrix}9 & -2 \\ -3 & -4 \\ \end{vmatrix} =(9)(-4)-(-2)(-3)=-42[/tex]
Now the solution of [tex]y[/tex] in the system is
[tex]y=\frac{D_y}{D}[/tex]
where [tex]D_y[/tex] is the determinant of the matrix formed by replacing [tex]y[/tex] column of the left matrix with elements of the right matrix [tex](5, -4)[/tex]:
[tex]D_y=\begin{vmatrix}9 & 5 \\ -3 & -4 \\ \end{vmatrix}=(9)(-4)-(5)(-3)=-21[/tex]
therefore,
[tex]y=\frac{\begin{vmatrix}9 & 5 \\ -3 & -4 \\ \end{vmatrix}}{D}[/tex]
[tex]\boxed{y=\frac{\begin{vmatrix}9 & 5 \\ -3 & -4 \\ \end{vmatrix}}{-42} =\frac{-21}{-42} =\frac{1}{2}}[/tex]
which is the second choice.
Answer:
The answer is B!
Step-by-step explanation:
Edge 2021 :)