Respuesta :
Answer: Animal 3
Explanation:
Acceleration [tex]a[/tex] is defined as the variation of Velocity [tex]\Delta V[/tex] in time [tex]\Delta t[/tex]:
[tex]a=\frac{\Delta V}{\Delta t}[/tex]
In this sense, with the data given in table 1 (figure attached) we can calculate each animal's velocity at each distance marker. Knowing velocity [tex]V[/tex] is defined as the variation of position [tex]\Delta d[/tex] in time [tex]\Delta t[/tex]:
[tex]V=\frac{\Delta d}{\Delta t}[/tex]
Since we already have the position (with the distance markers) and the time at that point, we can make the calculations for each one:
Animal 1:
[tex]V_{1}=\frac{25 m}{3 s}=8.33 m/s[/tex]
[tex]V_{2}=\frac{50 m}{4.5 s}=11.1 m/s[/tex]
[tex]V_{3}=\frac{75 m}{5 s}=15 m/s[/tex]
Animal 2:
[tex]V_{1}=\frac{25 m}{4.5 s}=5.55 m/s[/tex]
[tex]V_{2}=\frac{50 m}{5 s}=10 m/s[/tex]
[tex]V_{3}=\frac{75 m}{5.25 s}=14.28 m/s[/tex]
Animal 3:
[tex]V_{1}=\frac{25 m}{3.55 s}=7.14 m/s[/tex]
[tex]V_{2}=\frac{50 m}{7 s}=7.14 m/s[/tex]
[tex]V_{3}=\frac{75 m}{10.5 s}=7.14 m/s[/tex]
Animal 4:
[tex]V_{1}=\frac{25 m}{5 s}=5 m/s[/tex]
[tex]V_{2}=\frac{50 m}{10 s}=5 m/s[/tex]
[tex]V_{3}=\frac{75 m}{13 s}=5.76 m/s[/tex]
As we can see after the results of each calculation (table 2 in figure attached) the velocity remains the same with Animal 3, which means ther is no acceleration. Hence, Animal 3 moves with non-accelerated motion.