Respuesta :
Answer:
Animal 1
Explanation:
By the definition we know:
[tex]acceleration= \frac{change\,\,in\,\,speed}{time\,\,taken}[/tex]
From the given data table we calculate the speed of each animal at the given distance points.
[tex]speed=\frac{distance}{time}[/tex]
Animal 1:
after 25 meters:
[tex]speed=\frac{25}{3}[/tex]
[tex]speed=8.33 \,m.s^{-1}[/tex]
after 50 meters:
[tex]speed=\frac{50}{5}[/tex]
[tex]speed=10 \,m.s^{-1}[/tex]
enough to prove that there exists acceleration because of change in speed with time.
Animal 2:
after 25 meters:
[tex]speed=\frac{25}{4}[/tex]
[tex]speed=6.25 \,m.s^{-1}[/tex]
after 50 meters:
[tex]speed=\frac{50}{8}[/tex]
[tex]speed=6.25 \,m.s^{-1}[/tex]
after 75 meters:
[tex]speed=\frac{75}{12}[/tex]
[tex]speed=6.25 \,m.s^{-1}[/tex]
has constant speed, hence no acceleration.
Animal 3:
after 25 meters:
[tex]speed=\frac{25}{3}[/tex]
[tex]speed=8.33 \,m.s^{-1}[/tex]
after 50 meters:
[tex]speed=\frac{50}{6}[/tex]
[tex]speed=8.33 \,m.s^{-1}[/tex]
after 75 meters:
[tex]speed=\frac{75}{9}[/tex]
[tex]speed=8.33 \,m.s^{-1}[/tex]
has constant speed, hence no acceleration.
Animal 4:
after 25 meters:
[tex]speed=\frac{25}{10}[/tex]
[tex]speed=2.5 \,m.s^{-1}[/tex]
after 50 meters:
[tex]speed=\frac{50}{20}[/tex]
[tex]speed=2.5 \,m.s^{-1}[/tex]
after 75 meters:
[tex]speed=\frac{75}{30}[/tex]
[tex]speed=2.5 \,m.s^{-1}[/tex]
has constant speed, hence no acceleration.