Answer:
[tex]F(2x_A-x_B,2y_A-y_B)[/tex]
Step-by-step explanation:
Let points A, B and F have coordinates [tex]A(x_A,y_A),[/tex] [tex]B(x_B,y_B)[/tex] and [tex]F(x_F,y_F).[/tex]
If BA is extended all the way through A creating BF and A becomes the midpoint of BF, then the midpoint A of the segment BF has coordinates:
[tex]\dfrac{x_B+x_F}{2}=x_A\\ \\\dfrac{y_B+y_F}{2}=y_A[/tex]
Express coordinates of point F:
[tex]x_B+x_F=2x_A\Rightarrow x_F=2x_A-x_B\\ \\y_B+y_F=2y_A\Rightarrow y_F=2y_A-y_B[/tex]
Hence,
[tex]F(2x_A-x_B,2y_A-y_B)[/tex]