Answer:
[tex]\frac{A_1}{A_2}=3.97549776055[/tex]
Explanation:
The equation for terminal velocity is [tex]v_t=\sqrt{\frac{2mg}{\rho AC_d}}[/tex], where m is the mass of the sky diver, g the gravitational acceleration, [tex]\rho[/tex] the air density, A the effective cross-sectional area and [tex]C_d[/tex] the drag coefficient.
It will be easier if we write this as [tex]v_t^2 A=\frac{2mg}{\rho C_d}[/tex] and realize that for both situations the right hand side of that formula will be the same. This means that [tex]v_{t1}^2 A_1=v_{t2}^2 A_2=\frac{2mg}{\rho C_d}[/tex], so the ratio of the effective cross-sectional area A in the slower position ([tex]A_1[/tex] for [tex]v_{t1}=163 km/h[/tex]) to that in the faster position ([tex]A_2[/tex] for [tex]v_{t2}=325 km/h[/tex]) will be [tex]\frac{A_1}{A_2}=\frac{v_{t2}^2}{v_{t1}^2}=3.97549776055[/tex]