A light, inextensible cord passes over a light, frictionless pulley with a radius of 15 cm. It has a(n) 14 kg mass on the left and a(n) 5.2 kg mass on the right, both hanging freely. Initially their center of masses are a vertical distance 2.5 m apart. The acceleration of gravity is 9.8 m/s 2 .

Respuesta :

Answer:

The rate of acceleration is 7.441 m/s/s.

(19 - 2.6) * 9.8 / (19 + 2.6) = 7.441

The tension in the cord is 44.826 Newtons.

2.6 * (9.8 + 7.441) = 44.826

or

19 * (9.8 - 7.441) = 44.826

Explanation:

Answer with Explanation:

We are given that

[tex]m_1=14 kg[/tex]

[tex]m_2=5.2 lg[/tex]

Vertical distance,d=2.5 m

Acceleration due to gravity=[tex]g=9.8 m/s^2[/tex]

a.Acceleration=[tex]a=\frac{(m_1-m_2)}{m_1+m_2}g[/tex]

Substitute the values

Acceleration, a=[tex]\frac{14-5.2}{14+5.2}\times 9.8[/tex]

Acceleration, a=[tex]4.49 m/s^2[/tex]

b.Tension in the cord, [tex]T=m_2(a+g)[/tex]

Tension in the cord,[tex]T=5.2(9.8+4.49)=74.3 N[/tex]

Hence, the tension in the cord=74.3 N