Respuesta :

Answer:

-2 < x < 2

Step-by-step explanation:

split into 2 equations, solve for x

the integer solutions to the inequality is

[tex]-2<x<2[/tex]

Given :

we need to find the integer solution for the given inequality

[tex]2x < 3x + 2 < x + 6[/tex]

To solve this inequality , we break the inequalities and solve each inequality for x. Lets break the inequality

[tex]2x < 3x + 2 < x + 6\\ 2x < 3x + 2 \; and \; 3x + 2 < x + 6[/tex]

[tex]2x < 3x + 2\\2x -2x< 3x-2x + 2\\0<x+2\\0-2<x+2-2\\-2<x\\x>-2[/tex]

Now solve the second inequality

[tex]3x + 2 < x + 6\\3x-x + 2 < x-x + 6\\2x + 2 < + 6\\2x + 2-2 < + 6-2\\2x<4\\x<2[/tex]

So the solution is x>-2  and x<2

the integer solutions to the inequality is [tex]-2<x<2[/tex]

Learn more :  brainly.com/question/23804566