Answer:
[tex]P(disease/positivetest) = 0.36116[/tex]
Step-by-step explanation:
This is a conditional probability exercise.
Let's name the events :
I : ''A person is infected''
NI : ''A person is not infected''
PT : ''The test is positive''
NT : ''The test is negative''
The conditional probability equation is :
Given two events A and B :
P(A/B) = P(A ∩ B) / P(B)
[tex]P(B) >0[/tex]
P(A/B) is the probability of the event A given that the event B happened
P(A ∩ B) is the probability of the event (A ∩ B)
(A ∩ B) is the event where A and B happened at the same time
In the exercise :
[tex]P(I)=0.025[/tex]
[tex]P(NI)= 1-P(I)=1-0.025=0.975\\P(NI)=0.975[/tex]
[tex]P(PT/I)=0.904\\P(PT/NI)=0.041[/tex]
We are looking for P(I/PT) :
P(I/PT)=P(I∩ PT)/ P(PT)
[tex]P(PT/I)=0.904[/tex]
P(PT/I)=P(PT∩ I)/P(I)
0.904=P(PT∩ I)/0.025
P(PT∩ I)=0.904 x 0.025
P(PT∩ I) = 0.0226
P(PT/NI)=0.041
P(PT/NI)=P(PT∩ NI)/P(NI)
0.041=P(PT∩ NI)/0.975
P(PT∩ NI) = 0.041 x 0.975
P(PT∩ NI) = 0.039975
P(PT) = P(PT∩ I)+P(PT∩ NI)
P(PT)= 0.0226 + 0.039975
P(PT) = 0.062575
P(I/PT) = P(PT∩I)/P(PT)
[tex]P(I/PT)=\frac{0.0226}{0.062575} \\P(I/PT)=0.36116[/tex]