Answer :
(a) The equilibrium pressure of [tex]H_2[/tex] gas is, 288 torr
(b) The value [tex]K_p[/tex] for this reaction is, 0.786 atm
Solution :
The given equilibrium reaction is,
[tex]2AsH_3(g)\rightleftharpoons 2As(s)+3H_2(g)[/tex]
Initially pressure 392.0 0
At equilibrium (392.0-2x) 3x
The final pressure in the flask after the reaction has completed is 488.0 torr. That means,
[tex](392.0-2x)+3x=488.0[/tex]
[tex]x=96torr[/tex]
The partial pressure of [tex]H_2[/tex] at equilibrium = 3x = 3 × 96 = 288 torr
The partial pressure of [tex]AsH_3[/tex] at equilibrium = (392.0-2x) = [392.0-2(96)] = 200 torr
Now we have to calculate the [tex]K_p[/tex] for the reaction.
The expression of [tex]K_p[/tex] for the reaction will be:
[tex]K_p=\frac{(p_{H_2})^3}{(p_{AsH_3})^2}[/tex]
Now put all the given values in this expression, we get:
[tex]K_p=\frac{(288)^3}{(200)^2}[/tex]
[tex]K_p=597.1968torr=\frac{597.1968}{760}=0.786atm[/tex]
Conversion used : (1 atm = 760 torr)
Therefore, the value [tex]K_p[/tex] for this reaction is, 0.786 atm