Answer:
A. [tex]v_{3}=12.17m/s[/tex]
B. [tex]v_{car}=6.3m/s\\v_{truck}=-6.3m/s[/tex]
C. ΔK[tex]=-4.13x10^3J[/tex]
Explanation:
From the exercise we know that the car and the truck are traveling eastward. I'm going to name the car 1 and the truck 2
[tex]v_{1}=5.79m/s\\m_{1}=102kg\\v_{2}=18.5m/s\\m_{2}=103kg[/tex]
A. Since the two vehicles become entangled the final mass is:
[tex]m_{3}=102kg+103kg=205kg[/tex]
From linear momentum we got that:
[tex]p_{1}=p_{2}[/tex]
[tex]m_{1}v_{1}+m_{2}v_{2}=m_{3}v_{3}[/tex]
[tex]v_{3}=\frac{m_{1}v_{1}+m_{2}v_{2}}{m_{3} }=\frac{(102kg)(5.79m/s)+(103kg)(18.5m/s)}{(205kg)}[/tex]
[tex]v_{3}=12.17m/s[/tex]
B. The change in velocity of both vehicles are:
For the car
[tex]v_{car}=v_{f}-v_{o}=12.17m/s-5.79m/s=6.38m/s[/tex]
For the truck
[tex]v_{truck}=12.17m/s-18.5m/s=-6.3m/s[/tex]
C. The change in kinetic energy is:
ΔK=[tex]K_{2}-K_{1} =\frac{1}{2}m_{3}v_{3}^{2}-(\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2})[/tex]
ΔK=[tex]\frac{1}{2}(205)(12.17)^{2}-(\frac{1}{2}(102)(5.79)^{2}+\frac{1}{2}(103)(18.5)^{2})=-4.13x10^{3}J[/tex]
ΔK[tex]=-4.13x10^{3}J[/tex]