Respuesta :
Answer:
[tex]\kappa = \frac{1}{2 b}[/tex]
Explanation:
The equation for kappa ( κ) is
[tex]\kappa = \frac{a}{a^2 + b^2}[/tex]
we can find the maximum of kappa for a given value of b using derivation.
As b is fixed, we can use kappa as a function of a
[tex]\kappa (a) = \frac{a}{a^2 + b^2}[/tex]
Now, the conditions to find a maximum at [tex]a_0[/tex] are:
[tex]\frac{d \kappa(a)}{da} \left | _{a=a_0} = 0[/tex]
[tex]\frac{d^2\kappa(a)}{da^2} \left | _{a=a_0} < 0[/tex]
Taking the first derivative:
[tex]\frac{d}{da} \kappa = \frac{d}{da} (\frac{a}{a^2 + b^2})[/tex]
[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} \frac{d}{da}(a)+ a * \frac{d}{da} (\frac{1}{a^2 + b^2} )[/tex]
[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 + a * (-1) (\frac{1}{(a^2 + b^2)^2} ) \frac{d}{da} (a^2+b^2)[/tex]
[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - a (\frac{1}{(a^2 + b^2)^2} ) (2* a) [/tex]
[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - 2 a^2 (\frac{1}{(a^2 + b^2)^2} ) [/tex]
[tex]\frac{d}{da} \kappa = \frac{a^2+b^2}{(a^2 + b^2)^2} - 2 a^2 (\frac{1}{(a^2 + b^2)^2} ) [/tex]
[tex]\frac{d}{da} \kappa = \frac{1}{(a^2 + b^2)^2} (a^2+b^2 - 2 a^2) [/tex]
[tex]\frac{d}{da} \kappa = \frac{b^2 - a^2}{(a^2 + b^2)^2} [/tex]
This clearly will be zero when
[tex]a^2 = b^2[/tex]
as both are greater (or equal) than zero, this implies
[tex]a=b[/tex]
The second derivative is
[tex]\frac{d^2}{da^2} \kappa = \frac{d}{da} (\frac{b^2 - a^2}{(a^2 + b^2)^2} )[/tex]
[tex]\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} \frac{d}{da} ( b^2 - a^2 ) + (b^2 - a^2) \frac{d}{da} ( \frac{1}{(a^2 + b^2)^2} ) [/tex]
[tex]\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} ( -2 a ) + (b^2 - a^2) (-2) ( \frac{1}{(a^2 + b^2)^3} ) (2a) [/tex]
[tex]\frac{d^2}{da^2} \kappa = \frac{-2 a}{(a^2 + b^2)^2} + (b^2 - a^2) (-2) ( \frac{1}{(a^2 + b^2)^3} ) (2a) [/tex]
We dcan skip solving the equation noting that, if a=b, then
[tex]b^2 - a^2 = 0[/tex]
at this point, this give us only the first term
[tex]\frac{d^2}{da^2} \kappa = \frac{- 2 a}{(a^2 + a^2)^2} [/tex]
if a is greater than zero, this means that the second derivative is negative, and the point is a minimum
the value of kappa is
[tex]\kappa = \frac{b}{b^2 + b^2}[/tex]
[tex]\kappa = \frac{b}{2* b^2}[/tex]
[tex]\kappa = \frac{1}{2 b}[/tex]