The curvature of the helix r​(t)equals(a cosine t )iplus(a sine t )jplusbt k​ (a,bgreater than or equals​0) is kappaequalsStartFraction a Over a squared plus b squared EndFraction . What is the largest value kappa can have for a given value of​ b?

Respuesta :

Answer:

[tex]\kappa = \frac{1}{2 b}[/tex]

Explanation:

The equation for kappa ( κ) is

[tex]\kappa = \frac{a}{a^2 + b^2}[/tex]

we can find the maximum of kappa for a given value of b using derivation.

As b is fixed, we can use kappa as a function of a

[tex]\kappa (a) = \frac{a}{a^2 + b^2}[/tex]

Now, the conditions to find a maximum at [tex]a_0[/tex] are:

[tex]\frac{d \kappa(a)}{da} \left | _{a=a_0} = 0[/tex]

[tex]\frac{d^2\kappa(a)}{da^2}  \left | _{a=a_0} < 0[/tex]

Taking the first derivative:

[tex]\frac{d}{da} \kappa = \frac{d}{da}  (\frac{a}{a^2 + b^2})[/tex]

[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} \frac{d}{da}(a)+ a * \frac{d}{da}  (\frac{1}{a^2 + b^2} )[/tex]

[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 + a * (-1)  (\frac{1}{(a^2 + b^2)^2} ) \frac{d}{da}  (a^2+b^2)[/tex]

[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - a  (\frac{1}{(a^2 + b^2)^2} ) (2* a) [/tex]

[tex]\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )  [/tex]

[tex]\frac{d}{da} \kappa = \frac{a^2+b^2}{(a^2 + b^2)^2}  -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )  [/tex]

[tex]\frac{d}{da} \kappa = \frac{1}{(a^2 + b^2)^2} (a^2+b^2 -  2 a^2) [/tex]

[tex]\frac{d}{da} \kappa = \frac{b^2 -  a^2}{(a^2 + b^2)^2} [/tex]

This clearly will be zero when

[tex]a^2 = b^2[/tex]

as both are greater (or equal) than zero, this implies

[tex]a=b[/tex]

The second derivative is

[tex]\frac{d^2}{da^2} \kappa = \frac{d}{da} (\frac{b^2 -  a^2}{(a^2 + b^2)^2} )[/tex]

[tex]\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} \frac{d}{da} ( b^2 -  a^2 ) + (b^2 -  a^2) \frac{d}{da} ( \frac{1}{(a^2 + b^2)^2}  )  [/tex]

[tex]\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} ( -2  a ) + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a) [/tex]

[tex]\frac{d^2}{da^2} \kappa = \frac{-2  a}{(a^2 + b^2)^2} + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a) [/tex]

We dcan skip solving the equation noting that, if a=b, then

[tex]b^2 -  a^2 = 0[/tex]

at this point, this give us only the first term

[tex]\frac{d^2}{da^2} \kappa = \frac{- 2  a}{(a^2 + a^2)^2} [/tex]

if a is greater than zero, this means that the second derivative is negative, and the point is a minimum

the value of kappa is

[tex]\kappa = \frac{b}{b^2 + b^2}[/tex]

[tex]\kappa = \frac{b}{2* b^2}[/tex]

[tex]\kappa = \frac{1}{2 b}[/tex]

ACCESS MORE