Answer:
The net force acting on the tennis ball while it is in contact with the racquet is 50.73 N
Explanation:
The impulse-momentum theorem said that the net impulse is equal to the change of the momentum, this is:
[tex]\overrightarrow{I}=\varDelta\overrightarrow{P}\,\,(1)[/tex]
but the net impulse is too the net force times the change in time:
[tex]\overrightarrow{I}=\overrightarrow{F}\varDelta t\,\,(2)[/tex]
so using (2) on (1) we have:
[tex]\overrightarrow{F}\varDelta t=\varDelta\overrightarrow{P}\,\,(3)[/tex]
Decomposing that on x and y components:
[tex]F_{x}\varDelta t=\varDelta P_{x}=P_{fx}-P_{ox}\,\,(3)[/tex]
[tex]F_{y}\varDelta t=\varDelta P_{y}=P_{fy}-P_{oy}\,\,(4)[/tex]
(See figure below) with Pfx = m*vfx= m*vf*cos(15°)=(0.058kg)(40m/s)cos(15°),
Pox = -m*vox= m*vo*cos(15°)=-(0.058kg)(30m/s)cos(15°), the same analysis to Pfy and Poy gives
Pfy=(0.058kg)(40m/s)sin(15°), Poy=-(0.058kg)(30m/s)sin(15°), using those values on (3) and (4) and solving for Fy and Fx:
[tex]F_{x}=\frac{(0.058)(40)cos(15\text{\textdegree})-(-(0.058)(30)cos(15\text{\textdegree}))}{0.08}\simeq49N\,\,(5)[/tex]
[tex]F_{y}=\frac{(0.058)(40)sin(15\text{\textdegree})-(-(0.058)(30)sin(15\text{\textdegree}))}{0.08}\simeq13.13N\,\,(6)[/tex]
So the net force acting on the tennis ball while it is in contact with the racquet is:
[tex]F=\sqrt{F_{x}^{2}+F_{y}^{2}}\simeq50.73N[/tex]