Answer: 0.67 moles of [tex]N_2H_4[/tex]
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.
To calculate the moles, we use the equation:
[tex]\text{Number of moles of nitrogen}=\frac{\text{Given mass}}{\text {Molar mass}}=\frac{28.3}{28.02}=1mole[/tex]
[tex]2N_2H_4(l)+N_2O_4(l)\rightarrow 3N_2(g)+4H_2O(g)[/tex]
According to stoichiometry:
3 moles of [tex]N_2[/tex] is produced by 2 moles of [tex]N_2H_4[/tex]
Thus 1 mole of [tex]N_2[/tex] is produced by= [tex]\frac{2}{3}\times 1=0.67moles[/tex] of [tex]N_2H_4[/tex]
Thus 0.67 moles of [tex]N_2H_4[/tex] are required to produce 28.3 g of [tex]N_2[/tex]