A ball is thrown down vertically with an initial speed of 20 m/s from a height of 60 m. Find (a) its speed just before it strikes the ground and (b) how long it takes for the ball to reach the ground. Repeat (a) and (b) for the ball thrown directly up from the same height and with the same initial speed.

Respuesta :

Answer:

Explanation:

Ball is thrown downward:

initial velocity, u = - 20 m/s (downward)

height, h = - 60 m

Acceleration due to gravity, g = - 9.8 m/s^2 (downward)

(a) Let the speed of the ball as it hits the ground is v.

Use third equation of motion

[tex]v^{2}=u^{2}+2as[/tex]

[tex]v^{2}=(-20)^{2}+2\times 9.8 \times 60[/tex]

v = 39.69 m/s

(b) Let t be the time taken

Use First equation of motion

v = u + a t

- 39.69 = - 20 - 9.8 t

t = 2 second

Now the ball is thrown upwards:

initial velocity, u = 20 m/s (upward)

height, h = - 60 m

Acceleration due to gravity, g = - 9.8 m/s^2 (downward)

(c) Let the speed of the ball as it hits the ground is v.

Use third equation of motion

[tex]v^{2}=u^{2}+2as[/tex]

[tex]v^{2}=(-20)^{2}+2\times 9.8 \times 60[/tex]

v = 39.69 m/s

(d) Let t be the time taken

Use First equation of motion

v = u + a t

- 39.69 = + 20 - 9.8 t

t = 6.09 second

ACCESS MORE