Respuesta :

Answer:

They have a difference in energy of 35 eV.

Explanation:

The energy at rest of a particle is given by:

[tex]E_{R} = m_{0}c^2[/tex]   (1)

Where [tex]m_{0}[/tex] is the mass of the particle at rest and c is the speed of light.

Beta particles are high energy and high velocity electrons or positrons ejected from the nucleus of an atom as a consequence of a radioactive decay. Either if the beta particle is an electron¹ or a positron² it will have the same mass.

Hence, the mass of the beta particle at rest in equation (1) will be equal to the mass of an electron:

[tex]m_{e} = 9.1095x10^{-31} Kg[/tex]

Replacing the values of [tex]m_{e}[/tex] and c in equation (1) it is gotten:

[tex]E_{R} = (9.1095x10^{-31} Kg)(3.00x10^{8} m/s)^{2}[/tex]

[tex]E_{R} = 8.19x10^{-14} Kg.m^{2}/s^{2}[/tex]

But [tex]1 J = Kg.m^{2}/s^{2}[/tex], therefore:

[tex]E_{R} = 8.19x10^{-14} J[/tex]

It is better to express the rest energy in electronvolts (eV):

[tex]1eV = 1.60x10^{-19} J[/tex]

[tex]8.19x10^{-14} J . \frac{1 eV}{1.60x10^{-19} J}[/tex] ⇒ [tex]511.875 eV[/tex]

[tex]E_{R} = 511.875 eV[/tex]

So the energy of the beta particle at rest is 511.875 eV.

Case for the one traveling at 0.35c:

Since it is traveling at 35% of the speed of light it is necessary to express equation (1) in a relativistic way, that can be done adding the Lorentz factor to it:

[tex]E = \frac{m_{0}c^{2}}{sqrt{1-\frac{v^{2}}{c^{2}}}}[/tex]   (2)

Where v is the velocity of the particle (for this case 0.35c).

[tex]E = \frac{511.875 eV}{sqrt{1-\frac{(0.35c)^{2}}{c^{2}}}}[/tex]

[tex]E = \frac{511.875 eV}{sqrt{1-\frac{0.1225c^{2}}{c^{2}}}}[/tex]

[tex]E = \frac{511.875 eV}{sqrt{1-0.1225}}[/tex]

[tex]E = \over{511.875 eV}{sqrt{0.8775}}[/tex]

[tex]E = \over{511.875 eV}{0.936}[/tex]

[tex]E = 546.875 eV[/tex]

The difference in energy between the two particles can be determined using the relativistic form of the kinetic energy:

[tex]K = E – E_{R}[/tex]  (3)

Where E is the energy of the particle traveling at 0.35c and [tex]E_{R}[/tex] is the energy of the beta particle at rest.

[tex]K = 546.875 eV – 511.875 eV[/tex]

[tex]K = 35 eV[/tex]

They have a difference in energy of 35 eV.

Key terms:

¹Electron: Fundamental particle of negative electric charge.

²Positron: Is an electron with positive electric charge (similar to an electron in all its properties except in electric charge and magnetic moment).

RELAXING NOICE
Relax