Answer:
(a) v = 399.3 m/s, (b) v = 1742.4 m/s, (c) v = 399.3 m/s, (d) v = 1742.4 m/s
Explanation:
The velocity of a wave can be defined as:
[tex]v = \lambda f[/tex] (1)
Where [tex]\lambda[/tex] and f are the wavelength and frequency of the sound wave.
The values for each case will be replaced in equation (1).
(a) f = 36.3 Hz, λ = 11.0 m
[tex]v = (11.0 m)(36.3 Hz)[/tex]
But 1 Hz = s⁻¹, therefore:
[tex]v = (11.0 m)(36.3 s^{-1})[/tex]
[tex]v = 399.3 m.s^{-1}[/tex]
[tex]v = 399.3 m/s[/tex]
So the sound wave has a velocity of 399.3 m/s.
(b) f = 363.0 Hz, λ = 4.80 m
[tex]v = (4.80 m)(363.0 Hz)[/tex]
[tex]v = (4.80 m)(363.0 s^{-1})[/tex]
[tex]v = 1742.4 m.s^{-1}[/tex]
[tex]v = 1742.4 m/s[/tex]
So the sound wave has a velocity of 1742.4 m/s.
(c) f = 3,630.0 Hz, λ = 11.0 cm
Before using equation (1) it is necessary to express [tex]\lambda[/tex] in meters.
[tex]11.0 cm . \frac{1 m}{100 cm}[/tex] ⇒ [tex]0.11 m[/tex]
[tex]v = (0.11 m)(3630.0 Hz)[/tex]
[tex]v = (0.11 m)(3630.0 s^{-1})[/tex]
[tex]v = 399.3 m.s^{-1}[/tex]
[tex]v = 399.3 m/s[/tex]
So the sound wave has a velocity of 399.3 m/s.
(d) f = 36,300.0 Hz, λ = 4.80 cm
[tex]4.80 cm . \frac{1 m}{100 cm}[/tex] ⇒ [tex]0.048 m[/tex]
[tex]v = (0.048 m)(36300.0 Hz)[/tex]
[tex]v = (0.048 m)(36300.0 s^{-1})[/tex]
[tex]v = 1742.4 m.s^{-1}[/tex]
[tex]v = 1742.4 m/s[/tex]
So the sound wave has a velocity of 1742.4 m/s.