A fireworks shell is accelerated from rest to a velocity of 55.0 m/s over a distance of 0.210 m. (a) How long (in s) did the acceleration last? s
(b) Calculate the acceleration (in m/s2). (Enter the magnitude.) m/s^2

Respuesta :

Answer:

a) The acceleration took 0.0076s

b) The aceleration was of 7202.4 m/s^2

Explanation:

We need to use the formulas for acceleration movement in straight line that are:

(1) [tex]a = \frac{V}{t}[/tex]    and  (2)[tex]x=x_{0} +V_{0}t + \frac{1}{2} at^2[/tex]

Where

a = acceleration

V = Velocity reached

Vo = Initial velocity

t = time

x = distance

xo = initial distance.

We have the following information:

a = We want to find      V = 55.0 m/s      

Vo = 0m/s because it starts from rest       t = we want to find      

x = 0.210 m         xo= 0 m we beging in the point zero.

We have to variables in two equations, so we are going to replace in the second equation (2) the aceleration of the first one(1):

[tex]x=x_{0} +V_{0}t + \frac{1}{2} ( \frac{V}{t})t^2[/tex] We can cancel time because it is mutiplying and dividing the same factor so we have

[tex]x=x_{0} +V_{0}t + \frac{1}{2} Vt[/tex]    

In this equation we just have one variable that we don't know that is time, so first we are going to replace the values and after that clear time.

[tex]0.210=0 +0*t + \frac{1}{2} 55t[/tex]

[tex]0.210=27.5t[/tex]

[tex]\frac{0.21}{27.5} = t\\[/tex]

t = 0.0076s

a) The acceleration took 0.0076s

Now we replace in the (1) equation the values of time and velocity

[tex]a = \frac{V}{t}[/tex]

[tex]a = \frac{55}{0.0076}[/tex]

a = 7202.4 m/s^2

b) The aceleration was of 7202.4 m/s^2

ACCESS MORE