Answer:
T = g μ_s ( M+m )
78.4 N
Explanation:
When both of them move with the same acceleration , small box will not slip over the bigger one. When we apply force on the lower box, it starts moving with respect to lower box. So a frictional force arises on the lower box which helps it too to go ahead . The maximum value that this force can attain is mg μ_s . As a reaction of this force, another force acts on the lower box in opposite direction .
Net force on the lower box
= T - mg μ_s = M a ( a is the acceleration created by net force in M )
Considering force on the upper box
mg μ_s = ma
a = g μ_s
Put this value of a in the equation above
T - m gμ_s = M g μ_s
T = mg μ_s + M g μ_s
= g μ_s ( M+m )
2 )
Largest tension required
T = 9.8 x .50 x ( 10+6 )
= 78.4 N