Answer : The concentration of [tex]H_2,I_2[/tex] and [tex]HI[/tex] at equilibrium 0.033 M, 0.033 M and 0.234 M respectively.
Solution : Given,
[tex]K_c=50.3[/tex]
Concentration = 0.100 M
The given equilibrium reaction is,
[tex]H_2(g)+I_2(g)\rightleftharpoons 2HI(g)[/tex]
Initially conc. 0.100 0.100 0.100
At equilibrium (0.100-x) (0.100-x) (0.100+2x)
The expression of [tex]K_c[/tex] will be,
[tex]K=\frac{[HI]^2}{[H_2][I_2]}[/tex]
Now put all the given values in this expression, we get:
[tex]50.3=\frac{(0.100+2x)^2}{(0.100-x)\times (0.100-x)}[/tex]
By solving the term x, we get
[tex]x=0.067\text{ and }0.158[/tex]
From the values of 'x' we conclude that, x = 0.158 can not more than initial concentration. So, the value of 'x' which is equal to 0.158 is not consider.
Thus, the concentration of [tex]H_2[/tex] and [tex]I_2[/tex] at equilibrium = (0.100-x) = 0.100 - 0.067 = 0.033 M
The concentration of [tex]HI[/tex] at equilibrium = (0.100+2x) = 0.100 + 2(0.067) = 0.234 M