Respuesta :
Answer : The kinetic energy acquired by the electron in hydrogen atom is [tex]7.12\times 10^{-22}J[/tex]
Explanation :
First we have to calculate the wavelength.
Formula used :
[tex]E=\frac{hc}{\lambda}[/tex]
where,
E = energy = [tex]1.08\times 10^{-17}J[/tex]
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\lambda[/tex] = wavelength = ?
Now put all the given values in the above formula, we get:
[tex]1.08\times 10^{-17}J=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)}{\lambda}[/tex]
[tex]\lambda=1.84\times 10^{-8}m[/tex]
Now we have to determine the kinetic energy acquired by the electron in hydrogen atom.
According to de-Broglie, the expression for wavelength is,
[tex]\lambda=\frac{h}{p}[/tex]
and,
[tex]p=mv[/tex]
where,
p = momentum, m = mass, v = velocity
So, the formula will be:
[tex]\lambda=\frac{h}{mv}[/tex]
or,
[tex]v=\frac{h}{m\lambda}[/tex] ............(1)
The formula of kinetic energy is:
[tex]K.E=\frac{1}{2}mv^2[/tex] ..........(2)
Now put the equation 1 in 2, we get:
[tex]K.E=\frac{1}{2}m(\frac{h}{m\lambda})^2[/tex]
[tex]K.E=\frac{1}{2}(\frac{h^2}{m\lambda^2})[/tex] ............(3)
where,
m = mass of electron = [tex]9.1\times 10^{-31}kg[/tex]
Now put all the given values in the formula 3, we get:
[tex]K.E=\frac{1}{2}(\frac{(6.626\times 10^{-34}Js)^2}{(9.1\times 10^{-31}kg)\times (1.84\times 10^{-8}m)^2})[/tex]
[tex]K.E=7.12\times 10^{-22}J[/tex]
Therefore, the kinetic energy acquired by the electron in hydrogen atom is [tex]7.12\times 10^{-22}J[/tex]