Use the Associative Property and the Product of Powers Property
to simplify the expression below. Express your answer in scientific
notation. Show your work
(9.6 x 103) × (6.7 x 10²​

Respuesta :

Answer:

[tex]\boxed{6.432 \times 10^{5}}[/tex]

Explanation:

We use Scientific Notation as a special way of writing numbers. It is an amazing way to represent both big and small numbers, like this:

[tex]800 \rightarrow 8 \times 10^2[/tex]

Or:

[tex]5,700,000,000 \rightarrow 5.7 \times 10^9[/tex]

So in this exercise, we need to us Associative Property and the Product of Powers Property to find the result of:

[tex](9.6 \times 10^3) \times (6.7 \times 10^2)[/tex]

  • By Associative Property:

[tex](9.6 \times 10^3) \times (6.7 \times 10^2)=(9.6 \times 6.7 \times 10^3 \times 10^2 \\ \\[/tex]

[tex](9.6 \times 10^3) \times (6.7 \times 10^2)=(9.6 \times 6.7 \times 10^3 \times 10^2) \\ \\ = 64.32 \times 10^3 \times 10^2[/tex]

  • By Product of Powers Property:

Same base 10 and adding exponents:

[tex]64.32 \times 10^{3+2}=64.32 \times 10^{5} \\ \\ Arranging:\\ \\ \boxed{6.432 \times 10^{6}}[/tex]

RELAXING NOICE
Relax