Answer:
[tex]v_1 = 27.83 m/s[/tex]
Explanation:
Given data:
downhill velocity = 10.4 m/s
weight of wheel is 2.34 kg
distance from foot of hill is 68 m
cylinder diameter is 85 cm
from conservation of energy principle we have following relation
[tex]mgh + \frac{1}{2} mv^2 +\frac{1}{2} I_{cm} \omega^2 =
mgh + \frac{1}{2} mv_1^2 +\frac{1}{2} I_{cm} \omega^2[/tex]
we know that moment of inertia [tex] I_{cm} = mR^2[/tex]
[tex]= 2.34\times (\frac{0.85}{2})[/tex]
= 0.99 m^4
[tex]\omega = \frac{v}{R}[/tex]
SO WE HAVE
[tex]mgh + \frac{1}{2} mv^2 +\frac{1}{2} I_{cm} \frac{v}{R}^2 =
mgh + \frac{1}{2} mv_1^2 +\frac{1}{2} I_{cm} \frac{v_1}{R}[/tex]
[tex]mgh + mv^2 = mv_1^2
[tex]v_1^2 = v^2 + gh[/tex]
[tex]= 10.4^2 + 9.8\times 68[/tex]
[tex]v_1 = 27.83 m/s[/tex]