Respuesta :
Answer:
(A) [tex]y=ke^{2t}[/tex] with [tex]k\in\mathbb{R}[/tex].
(B) [tex]y=ke^{2t}/2-1/2[/tex] with [tex]k\in\mathbb{R}[/tex]
(C) [tex]y=k_1e^{2t}+k_2e^{-2t}[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex]
(D) [tex]y=k_1e^{2t}+k_2e^{-2t}+e^{3t}/5[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex],
Step-by-step explanation
(A) We can see this as separation of variables or just a linear ODE of first grade, then [tex]0=y'-2y=\frac{dy}{dt}-2y\Rightarrow \frac{dy}{dt}=2y \Rightarrow \frac{1}{2y}dy=dt \ \Rightarrow \int \frac{1}{2y}dy=\int dt \Rightarrow \ln |y|^{1/2}=t+C \Rightarrow |y|^{1/2}=e^{\ln |y|^{1/2}}=e^{t+C}=e^{C}e^t} \Rightarrow y=ke^{2t}[/tex]. With this answer we see that the set of solutions of the ODE form a vector space over, where vectors are of the form [tex]e^{2t}[/tex] with [tex]t[/tex] real.
(B) Proceeding and the previous item, we obtain [tex]1=y'-2y=\frac{dy}{dt}-2y\Rightarrow \frac{dy}{dt}=2y+1 \Rightarrow \frac{1}{2y+1}dy=dt \ \Rightarrow \int \frac{1}{2y+1}dy=\int dt \Rightarrow 1/2\ln |2y+1|=t+C \Rightarrow |2y+1|^{1/2}=e^{\ln |2y+1|^{1/2}}=e^{t+C}=e^{C}e^t \Rightarrow y=ke^{2t}/2-1/2[/tex]. Which is not a vector space with the usual operations (this is because [tex]-1/2[/tex]), in other words, if you sum two solutions you don't obtain a solution.
(C) This is a linear ODE of second grade, then if we set [tex]y=e^{mt} \Rightarrow y''=m^2e^{mt}[/tex] and we obtain the characteristic equation [tex]0=y''-4y=m^2e^{mt}-4e^{mt}=(m^2-4)e^{mt}\Rightarrow m^{2}-4=0\Rightarrow m=\pm 2[/tex] and then the general solution is [tex]y=k_1e^{2t}+k_2e^{-2t}[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex], and as in the first items the set of solutions form a vector space.
(D) Using C, let be [tex]y=me^{3t} [/tex] we obtain that it must satisfies [tex]3^2m-4m=1\Rightarrow m=1/5[/tex] and then the general solution is [tex]y=k_1e^{2t}+k_2e^{-2t}+e^{3t}/5[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex], and as in (B) the set of solutions does not form a vector space (same reason! as in (B)).