An Article in the Journal of Sports Science (1987, Vol. 5, pp. 261-271) presents the results of an investigation of the hemoglobin level of Canadian Olympic ice hockey players. A random sample of 20 players is selected and the hemoglobin level is measured. The resulting sample mean and standard deviation(g/dl) are and Use this information to calculate a 95% two-sided confidence interval on the mean hemoglobin level and a 95% two-sided confidence interval on the variance. Assume the data are normally distributed. Round your answers to 2 decimal places.

Respuesta :

Answer:

The 95% confidence interval for the population variance is [tex]\left[0.219, \hspace{0.1cm} 0.807\right]\\\\[/tex]

The 95% confidence interval for the population mean is [tex]\left [15.112, \hspace{0.3cm}15.688\right][/tex]

Step-by-step explanation:

To solve this problem, a confidence interval of [tex](1-\alpha) \times 100%[/tex] for the population variance will be calculated.

[tex]$Sample variance: $S^2=(0.6152)^2$\\Sample size $n=20$\\Confidence level $(1-\alpha)\times100\%=95\%$\\$\alpha: \alpha=0.05$\\$\chi^2$ values (for a 95\% confidence and n-1 degree of freedom)\\$\chi^2_{\left (1-\frac{\alpha}{2};n-1\right )}=\chi^2_{(0.975;19)}=8.907\\$\chi^2_{\left (\frac{\alpha}{2};n-1\right )}=\chi^2_{(0.025;19)}=32.852\\\\[/tex]

Then, the [tex](1-\alpha) \times 100%[/tex] confidence interval for the population variance is given by:

[tex]\left [\frac{(n-1)S^2}{\chi^2_{\left (\frac{\alpha}{2};n-1\right )}}, \hspace{0.3cm}\frac{(n-1)S^2}{\chi^2_{\left (1-\frac{\alpha}{2};n-1\right )}} \right ]\\\\[/tex]Thus, the 95% confidence interval for the population variance is:[tex]\\\\\left [\frac{(19-1)(0.6152)^2}{32.852}, \hspace{0.1cm}\frac{(19-1)(0.6152)^2}{8.907} \right ]=\left[0.219, \hspace{0.1cm} 0.807\right]\\\\[/tex]

On other hand,

A confidence interval of [tex](1-\alpha) \times 100%[/tex] for the population mean will be calculated

[tex]$Sample mean: $\bar X=15.40$\\Sample variance: $S^2=(0.6152)^2$\\Sample size $n=20$\\Confidence level $(1-\alpha)\times100\%=95\%$\\$\alpha: \alpha=0.05$\\T values (for a 95\% confidence and n-1 degree of freedom) T_{(\alpha/2;n-1)}=T_{(0.025;19)}=2.093\\\\$Then, the (1-\alpha) \times 100$\% confidence interval for the population mean is given by:\\\\[/tex]

\[tex]\left[ \bar X - T_{(\alpha/2;n-1}\sqrt{\frac{\S^2}{n}}, \hspace{0.3cm}\bar X + T_{(\alpha/2;n-1}\sqrt{\frac{\S^2}{n}} \right ]\\\\[/tex]Thus, the 95\% confidence interval for the population mean is:[tex]\\\\\left [15.40 - 2.093\sqrt{\frac{(0.6152)^2}{19}}, \hspace{0.3cm}15.40 + 2.093\sqrt{\frac{(0.6152)^2}{19}} \right ]=\left [15.112, \hspace{0.3cm}15.688\right] \\\\[/tex]

ACCESS MORE