Respuesta :
Answer:
[tex]\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = ( 48.00 \frac{V}{m} , 0 , - 144.00 \frac{V}{m} )[/tex]
Explanation:
We know that the relationship between the electric field [tex]\vec{E}(\vec{r})[/tex] and the potential [tex]V(\vec{r})[/tex] is given by
[tex]\vec{E} ( \vec{r}) = - \vec{\nabla} V(\vec{r})[/tex]
So, for our potential:
[tex]V(r) = a x^2 z + b x y - c z^2[/tex]
the electric field is :
[tex]\vec{E} ( \vec{r}) = - \vec{\nabla} ( a x^2 z + b x y - c z^2 )[/tex]
[tex]\vec{E} ( \vec{r}) = - ( \frac{ \partial }{\partial x}, \frac{ \partial }{\partial y} , \frac{ \partial }{\partial z}) ( a x^2 z + b x y - c z^2 )[/tex]
[tex]\vec{E} ( \vec{r}) = - ( \frac{ \partial }{\partial x} ( a x^2 z + b x y - c z^2 ) , \frac{ \partial }{\partial y} ( a x^2 z + b x y - c z^2 ) , \frac{ \partial }{\partial z} ( a x^2 z + b x y - c z^2 ))[/tex]
[tex]\vec{E} ( \vec{r}) = - ( 2 a x z + b y , b x , a x^2 - 2 c z )[/tex]
This is the our electric field. At vector point
[tex]\vec{r} = (0, -8.00 \ m, - 8.00 \ m)[/tex]
[tex]\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = - ( 2 a * 0 * (-8.00 \ m) + b (-8.00 \ m) , b * 0 , a 0^2 - 2 c (-8.00 \ m) )[/tex]
[tex]\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = - ( 0 - b 8.00 \ m , 0 , 0 + 2 c 8.00 \ m )[/tex]
[tex]\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = ( b 8.00 \ m , 0 , - 2 c 8.00 \ m )[/tex]
Knowing
[tex]b= 6.00 \frac{V}{m^2}[/tex]
and
[tex]c=9.00 \frac{V}{m^2}[/tex]
the electric field is
[tex]\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = ( 6.00 \frac{V}{m^2} * 8.00 \ m , 0 , - 9.00 \frac{V}{m^2} * 2* 8.00 \ m )[/tex]
[tex]\vec{E} ( (0, -8.00 \ m, - 8.00 \ m) ) = ( 48.00 \frac{V}{m} , 0 , - 144.00 \frac{V}{m} )[/tex]