Answer with Step-by-step explanation:
Given
[tex]f(x)=7sin(2x)+7sin(x)[/tex]
Differentiating both sides by 'x' we get
[tex]14cos(2x)+7cos(x)=f'(x)[/tex]
Now we know that for an increasing function we have
[tex]f'(x)>0\\\\14cos(2x)+7cos(x)>0\\\\2cos(2x)+cos(x)>0\\\\2(2cos^{2}(x)-1)+cos(x)>0\\\\4cos^{2}(x)+cos(x)-2>0\\\\(2cos(x)+\frac{1}{2})^2-2-\frac{1}{4}>0\\\\(2cos(x)+\frac{1}{2})^2>\frac{9}{4}\\\\2cos(x)>\frac{3}{2}-\frac{1}{2}\\\\\therefore cos(x)>\frac{1}{4}\\\\\therefore x=[0,cos^{-1}(1/4)]\cup [2\pi-cos^{-1}(1/4),2\pi ][/tex]
Similarly for decreasing function we have
[tex][tex]f'(x)<0\\\\\therefore cos(x)<1/4\\\\x<cos^{-1}(\frac{1}{4})\\\\x=[cos^{-1}(\frac{1}{4}),2\pi -cos^{-1}(\frac{1}{4})][/tex]
Part b)
To find the extreme points we equate the derivative with 0
[tex]f'(x)=0\\\\cos(x)=\frac{1}{4}\\\\x=cos^{-1}(\frac{1}{4})[/tex]
Thus point of extrema is only 1.