Let [tex]\mu[/tex] be the population mean.
Null hypothesis : [tex]H_0:\mu=8.4[/tex]
Alternative hypothesis : [tex]H_1:\mu<8.4[/tex]
Since the alternative hypothesis is left tailed, so the test is a left-tailed test.
Sample size : n=106 >30 , so we use z-test.
Test statistic: [tex]z=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]z=\dfrac{8.5-8.4}{\dfrac{0.9}{\sqrt{106}}}=1.14395890455\approx1.14[/tex]
The P-value (Left tailed test)= [tex]P(z<1.14)= 0.8728568[/tex]
Since, the p-value is greater than the significance level , so we fail to reject the null hypothesis.
Hence, we cannot support the company's claim.