Respuesta :
Answer:
30298514.82 m/s
Explanation:
M = Mass of star = 2×10³ kg
r = Radius of star = 5×10³ m
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
[tex]a=G\frac{M}{r^2}\\\Rightarrow a=6.67\times 10^{-11}\frac{2\times 10^{30}}{5\times 10^3}\\\Rightarrow a=2.7\times 10^{16}\ m/s^2[/tex]
[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 2.7\times 10^{16}\times 0.017+0^2}\\\Rightarrow v=30298514.82\ m/s[/tex]
The object would be moving at a velocity of 30298514.82 m/s
Answer:
Velocity will be [tex]v=3.266\times 10^5m/sec[/tex]
Explanation:
We have given mass of the star [tex]M=2\times 10^{30}kg[/tex}
Radius of the star [tex]R=5\times 10^{3}m[/tex]
Gravitational constant [tex]G=6.67\times 10^{-11}Nm^2/kg^2[/tex]
We know that acceleration is given by [tex]a=\frac{GM}{R^2}=\frac{6.67\times 10^{-11}\times 2\times 10^{30}}{(5\times 10^3)^2}=5.33\times 10^{12}m/sec^2[/tex]
Displacement is given as s = 0.017 m
From third equation of motion
[tex]v^2=u^2+2as[/tex]
As initial velocity u = 0 m/sec
So [tex]v^2=0^2+2\times 5.33\times 10^{12}\times 0.017[/tex]
[tex]v=3.266\times 10^5m/sec[/tex]