Answer:
[tex]\frac{F_1}{F_2}=3.55[/tex]
Explanation:
F = Force
C = Drag coefficient equal for both aircrafts
ρ = Density of air
A = Surface area equal for both aircrafts
v = Velocity
[tex]v_2=\frac{2}{5}v_1[/tex]
[tex]F_1=\frac{1}{2}\rho_1 CAv_1^2[/tex]
[tex]F_2=\frac{1}{2}\rho_2 CAv_2^2\\\Rightarrow F_2=\frac{1}{2}\rho_2 CA\left(\frac{2}{5}v_1\right)^2[/tex]
Dividing the above two equations we get
[tex]\frac{F_1}{F_2}=\frac{\frac{1}{2}\rho_1 CAv_1^2}{\frac{1}{2}\rho_2 CA\left(\frac{2}{5}v_1\right)^2}\\\Rightarrow \frac{F_1}{F_2}=\frac{\rho_1}{\rho_2\frac{4}{25}}\\\Rightarrow \frac{F_1}{F_2}=\frac{0.38}{0.67\frac{4}{25}}\\\Rightarrow \frac{F_1}{F_2}=3.55[/tex]
The ratio of the drag forces is [tex]\mathbf{\frac{F_1}{F_2}}=\mathbf{3.55}[/tex]