Calculate the ratio of the drag force on a jet flying at 950 km/h at an altitude of 10 km to the drag force on a prop-driven transport flying at two-fifths the speed and half the altitude of the jet. The density of air is 0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that the airplanes have the same effective cross-sectional area and drag coefficient C.

Respuesta :

Answer:

[tex]\frac{F_1}{F_2}=3.55[/tex]

Explanation:

F = Force

C = Drag coefficient equal for both aircrafts

ρ = Density of air

A = Surface area equal for both aircrafts

v = Velocity

[tex]v_2=\frac{2}{5}v_1[/tex]

[tex]F_1=\frac{1}{2}\rho_1 CAv_1^2[/tex]

[tex]F_2=\frac{1}{2}\rho_2 CAv_2^2\\\Rightarrow F_2=\frac{1}{2}\rho_2 CA\left(\frac{2}{5}v_1\right)^2[/tex]

Dividing the above two equations we get

[tex]\frac{F_1}{F_2}=\frac{\frac{1}{2}\rho_1 CAv_1^2}{\frac{1}{2}\rho_2 CA\left(\frac{2}{5}v_1\right)^2}\\\Rightarrow \frac{F_1}{F_2}=\frac{\rho_1}{\rho_2\frac{4}{25}}\\\Rightarrow \frac{F_1}{F_2}=\frac{0.38}{0.67\frac{4}{25}}\\\Rightarrow \frac{F_1}{F_2}=3.55[/tex]

The ratio of the drag forces is [tex]\mathbf{\frac{F_1}{F_2}}=\mathbf{3.55}[/tex]

RELAXING NOICE
Relax