Answer:
Explanation:
Two vectors [tex]\vec{v}_1[/tex] and [tex]\vec{v}_2[/tex] are linearly independent if the equation
[tex]\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 = \vec{0}[/tex]
where [tex]\alpha_1[/tex] and [tex]\alpha_2[/tex] are scalars, has only one solution:
[tex]\alpha_1 = \alpha_2 = 0[/tex].
If there is more than one solution, we say that the vector are linearly dependent.
if [tex]\vec{v}_1 = 0[/tex] then, [tex]\alpha_1[/tex] could have any value of the scalar group, as for any scalar [tex]\alpha[/tex]
[tex]\alpha * \vec{0} = \vec{0}[/tex]
So, we get that there is more than one solution.
So, a particular counterexample is:
[tex]\vec{v}_1 = (0,0,0,0)[/tex]
[tex]\vec{v}_2 = (1,0,0,0)[/tex]
as [tex]\vec{v}_2[/tex] is not an scalar multiple of [tex]\vec{v}_2[/tex], and the equation
[tex]\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 = \vec{0}[/tex]
has as solution
[tex]\alpha_1 = 2[/tex]
[tex]\alpha_2 = 0[/tex]
as we can see
[tex]2 (0,0,0,0) + 0 (1,0,0,0) = \vec{0}[/tex]
[tex] (2* 0,2 *0,2*0,2*0) + (0*1,0*0,0*0,0*0) = \vec{0}[/tex]
[tex] (0,0,0,0) + (0,0,0,0) = \vec{0}[/tex]
[tex] (0+0,0+0,0+0,0+0) = \vec{0}[/tex]