Answer:
The solution of the differential equation is [tex]y(t) = -4 + 12t + 10e^{-3t} [/tex].
Step-by-step explanation:
The first step is to take Laplace transform in both sides of the differential equation. As usual, we denote the Laplace transform of [tex]y[/tex] as [tex]Y=L[y][/tex]. Then,
[tex]L[y'+3y](s) = L[36t](s)[/tex]
[tex]L[y'](s)+3L[y](s) = 36L[t](s)[/tex]
[tex]sY(s)-y(0)+3Y(s) = \frac{36}{s^2}[/tex]
In the last step we use that [tex]L[y'](s) = sL[y](s)-y(0)[/tex] and [tex]L[t](s) = \frac{1}{s^2}[/tex].
Notice that our differential equations becomes an algebraic equation for [tex]Y(s)[/tex], which is more simple to solve.
In the expression we have obtained, we can write [tex]Y(s)[/tex] in terms of [tex]s[/tex]:
[tex](s+3)Y(s)-6=\frac{36}{s^2}[/tex] which is equivalent to
[tex]Y(s) = \frac{36}{s^2(s+3)} +\frac{6}{s+3}[/tex].
Now, we make a partial fraction decomposition for the term [tex]\frac{36}{s^2(s+3)}[/tex]. Thus,
[tex]\frac{36}{s^2(s+3)} = -\frac{4}{s} + \frac{12}{s^2} + \frac{4}{s+3}[/tex].
Substituting the above value into the expression for [tex]Y(s)[/tex] we get
[tex]Y(s) = -\frac{4}{s} + \frac{12}{s^2} + \frac{4}{s+3} + \frac{6}{s+3} = -\frac{4}{s} + \frac{12}{s^2} + \frac{10}{s+3}.
Finally, we take the inverse Laplace transform (denoted by [tex]L^{-1}[/tex]) in both hands of the above expression. Recall that [tex]y(t) = L^{-1}[Y](t)[/tex]. So,
[tex]y(t) = L^{-1}\left[-\frac{4}{s} + \frac{12}{s^2} + \frac{10}{s+3}\right](t) [/tex]
[tex]y(t) = -4L^{-1}\left[\frac{1}{s}\right](t) + 12L^{-1}\left[\frac{1}{s^2}\right](t) + 10L^{-1}\left[\frac{1}{s+3}\right](t) [/tex]
[tex]y(t) = -4 + 12t + 10e^{-3t} [/tex].
To obtain this we have used the following identities that can be found in any table of Laplace transforms
[tex]L^{-1}\left[\frac{1}{s}\right](t) = 1[/tex]
[tex]L^{-1}\left[\frac{1}{s^2}\right](t) = t[/tex]
[tex]L^{-1}\left[\frac{1}{s+3}\right](t) = e^{-3t}[/tex]