Answer:
Explanation:
The equation for the voltage V of discharging capacitor in an RC circuit at time t is:
[tex]V(t) = V_0 e^{(- \frac{t}{\tau}) }[/tex]
where [tex]V_0[/tex] is the initial voltage, and [tex]\tau[/tex] is the time constant.
For our problem, we know
[tex]V_0 = 185 \ V[/tex]
and
[tex]V(10 \ s) = V_0 e^{(- \frac{10 \ s}{\tau}) } = 1.64 \ V[/tex]
So
[tex] 185 \ V \ e^{(- \frac{10 \ s}{\tau}) } = 1.64 \ V[/tex]
[tex] e^{(- \frac{10 \ s}{\tau}) } = \frac{1.64 \ V}{ 185 \ V }[/tex]
[tex] ln (e^{(- \frac{10 \ s}{\tau}) } ) = ln (\frac{1.64 \ V}{ 185 \ V })[/tex]
[tex] - \frac{10 \ s}{\tau} = ln (\frac{1.64 \ V}{ 185 \ V })[/tex]
[tex] \tau = \frac{-10 \s}{ln (\frac{1.64 \ V}{ 185 \ V }) }[/tex]
This gives us
[tex] \tau = 2.1161 s[/tex]
and this is the time constant.
At t = 18.8 s we got:
[tex]V(18.8 \ s) = 185 \ V \ e^{(- \frac{18.8 \ s}{2.1161 s}) } [/tex]
[tex]V(18.8 \ s) = 185 \ V \ e^{(- \frac{18.8 \ s}{2.1161 s}) } [/tex]
[tex]V(18.8 \ s) = 0.0256 \ V[/tex]