Respuesta :
Answer:
[tex] v_f = 15 \frac{m}{s} [/tex]
Explanation:
We can solve this problem using conservation of angular momentum.
The angular momentum [tex]\vec{L}[/tex] is
[tex]\vec{L} = \vec{r} \times \vec{p}[/tex]
where [tex]\vec{r}[/tex] is the position and [tex]\vec{p}[/tex] the linear momentum.
We also know that the torque is
[tex]\vec{\tau} = \frac{d\vec{L}}{dt} = \frac{d}{dt} ( \vec{r} \times \vec{p} )[/tex]
[tex]\vec{\tau} = \frac{d}{dt} \vec{r} \times \vec{p} + \vec{r} \times \frac{d}{dt} \vec{p} [/tex]
[tex]\vec{\tau} = \vec{v} \times \vec{p} + \vec{r} \times \vec{F} [/tex]
but, as the linear momentum is [tex]\vec{p} = m \vec{v}[/tex] this means that is parallel to the velocity, and the first term must equal zero
[tex]\vec{v} \times \vec{p}=0[/tex]
so
[tex]\vec{\tau} = \vec{r} \times \vec{F} [/tex]
But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so
[tex]\vec{\tau}_{rod} = 0 [/tex]
this means, for the angular momentum measure from the rod:
[tex]\frac{d\vec{L}_{rod}}{dt} = 0 [/tex]
that means :
[tex]\vec{L}_{rod} = constant[/tex]
So, the magnitude of initial angular momentum is :
[tex]| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)[/tex]
but the angle is 90°, so:
[tex]| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| [/tex]
[tex]| \vec{L}_{rod_i} | = r_i * m * v_i[/tex]
We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:
[tex]| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s} [/tex]
[tex]| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s} [/tex]
For our final angular momentum we have:
[tex]| \vec{L}_{rod_f} | = r_f * m * v_f[/tex]
and the radius is 0.250 m and the mass is 2.00 kg
[tex]| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f [/tex]
but, as the angular momentum is constant, this must be equal to the initial angular momentum
[tex] 7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f [/tex]
[tex] v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg} [/tex]
[tex] v_f = 15 \frac{m}{s} [/tex]
Answer:
15 m/s
Explanation:
L = mvr
Li = (2.00 kg)(0.750 m)(5m/s) = 7.5 kgm^2/s
conservation of angular momentum --> Li=Lf
Lf = 7.5 kgm^2/s
7.5 kgm^2/s = (2.00 kg)(0.250 m)(vf)
vf = 15 m/s