Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless surface with a tangential speed of 5 m/s. The string has been slowly winding around a vertical rod, and a few seconds later the length of the string has shortened to 0.250 m. What is the instantaneous speed of the mass at the moment the string reaches a length of 0.250 m?

Respuesta :

Answer:

[tex] v_f = 15 \frac{m}{s}  [/tex]

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum [tex]\vec{L}[/tex] is

[tex]\vec{L}  = \vec{r} \times \vec{p}[/tex]

where [tex]\vec{r}[/tex] is the position and [tex]\vec{p}[/tex] the linear momentum.

We also know that the torque is

[tex]\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )[/tex]

[tex]\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p} [/tex]

[tex]\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F} [/tex]

but, as the linear momentum is [tex]\vec{p} = m \vec{v}[/tex] this means that is parallel to the velocity, and the first term must equal zero

[tex]\vec{v} \times \vec{p}=0[/tex]

so

[tex]\vec{\tau} =   \vec{r} \times \vec{F} [/tex]

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

[tex]\vec{\tau}_{rod} =   0 [/tex]

this means, for the angular momentum measure from the rod:

[tex]\frac{d\vec{L}_{rod}}{dt} =   0 [/tex]

that means :

[tex]\vec{L}_{rod} = constant[/tex]

So, the magnitude of initial angular momentum is :

[tex]| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)[/tex]

but the angle is 90°, so:

[tex]| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| [/tex]

[tex]| \vec{L}_{rod_i} | = r_i * m * v_i[/tex]

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

[tex]| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s} [/tex]

[tex]| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s} [/tex]

For our final angular momentum we have:

[tex]| \vec{L}_{rod_f} | = r_f * m * v_f[/tex]

and the radius is 0.250 m and the mass is 2.00 kg

[tex]| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f [/tex]

but, as the angular momentum is constant, this must be equal to the initial angular momentum

[tex] 7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f [/tex]

[tex] v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg} [/tex]

[tex] v_f = 15 \frac{m}{s}  [/tex]

Answer:

15 m/s

Explanation:

L = mvr

Li = (2.00 kg)(0.750 m)(5m/s) = 7.5 kgm^2/s

conservation of angular momentum --> Li=Lf

Lf = 7.5 kgm^2/s

7.5 kgm^2/s = (2.00 kg)(0.250 m)(vf)

vf = 15 m/s

ACCESS MORE