Two friends, Al and Jo, have a combined mass of 195 kg. At the ice skating rink, they stand close together on skates, at rest and facing each other. Using their arms, they push on each other for 1 second and move off in opposite directions. Al moves off with a speed of 10.2 m/sec in one direction and Jo moves off with a speed of 11.4 m/sec in the other. You can assume friction is negligible. Find Al's mass

Respuesta :

Answer:

Al's mass is 102.92  kg  

Explanation:

As there are no external forces in the horizontal direction, the horizontal net force must be zero:

[tex]F_{net} = 0[/tex]

As the force is the derivative in time of the momentum, this means that the horizontal momentum is constant:

[tex]F_{net} = \frac{dp_{horizontal}}{dt} = 0[/tex]

[tex]p_{horizontal_i }= p_{horizontal_f}[/tex]

where the suffix i and f means initial and final respectively.

The initial momentum will be:

[tex]p_{horizontal_}i = m_{Al} \ v_{Al_i} + m_{Jo} \ v_{Jo_i}[/tex]

But, as they are at rest, initially

[tex]p_{horizontal_i} = m_{Al} * 0 + m_{Jo} * 0[/tex]

[tex]p_{horizontal_i} = 0[/tex]

So, this means:

[tex]p_{horizontal_f} = m_{Al} \ v_{Al_f} + m_{Jo} \ v_{Jo_f} = 0 [/tex]

We know that the have an combined mass of 195 kg:

[tex]m_{total} = m_{Al} + m_{Jo} = 195 \ kg[/tex].

so:

[tex] m_{Jo} = 195 \ kg - m_{Al}[/tex].

[tex]m_{Al} \ v_{Al_f} + (195 \ kg - m_{Al}) \ v_{Jo_f} = 0 [/tex]

[tex]m_{Al} \  v_{Al_f} - m_{Al} \  v_{Jo_f}= - 195 \ kg \  v_{Jo_f}  [/tex]

[tex]m_{Al} \ (v_{Al_f} - v_{Jo_f})= - 195 \ kg \ v_{Jo_f}  [/tex]

[tex]m_{Al} = \frac{ - 195 \ kg \ v_{Jo_f} } {  v_{Al_f} - v_{Jo_f} }  [/tex]

[tex]m_{Al} = \frac{195 \ kg  \ v_{Jo_f} } {    v_{Jo_f} - v_{Al_f} }  [/tex]

Now, we can use the values:

[tex]v_{Al_f}= 10.2 \frac{m}{s}[/tex]

[tex]v_{Jo_f}= - 11.4 \frac{m}{s}[/tex]

where the minus sign appears as they are moving at opposite directions

[tex]m_{Al} = \frac{195 \ kg  ( - 11.4 \frac{m}{s} ) } {   (- 11.4 \frac{m}{s}) - 10.2 \frac{m}{s} }  [/tex]

[tex]m_{Al} = 102.92 \ kg  [/tex]

and this is the Al's mass.

ACCESS MORE
EDU ACCESS