Respuesta :
Answer:
a. the magnitude of the speed is 14.69 m/s
b. The direction is - 30 ° 57' 49''
Explanation:
As there are no external forces in the horizontal direction, we know that the linear momentum must be conserved.
[tex]\vec{p} = constant[/tex]
So, taking [tex]\vec{p}_i[/tex] our initial momentum and [tex]\vec{p}_f[/tex] our final momentum, we got:
[tex]\vec{p}_i=\vec{p}_f[/tex]
The momentum of the system will be:
[tex]\vec{p} = m_b \ \vec{v}_b + m_s \ \vec{v}_s[/tex]
where [tex]m_b[/tex] and [tex]\vec{v}_b[/tex] are the mass and the velocity of the bullet and [tex]m_s[/tex] and [tex]\vec{v}_s[/tex] are the mass and the velocity of the stone.
Initial conditions
We know that the mass of the bullet is :
[tex]m_b = 2.4 \ g = 2.4 \ 10^{-3} \ kg[/tex]
taking the unit vector [tex]\hat{i}[/tex] pointing in the original direction of the bullet, the velocity will be:
[tex]\vec{v}_{b_i} = 525 \frac{m}{s} \ \hat{i}[/tex]
The mass of the stone is
[tex]m_{s} = 0.100 \ kg[/tex]
as is at rest, the initial velocity will be zero
[tex]\vec{v}_{s_i} = 0[/tex]
So, our initial momentum will be
[tex]\vec{p}_i = m_b \ \vec{v}_{b_i} + m_s \ \vec{v}_{s_i}[/tex]
[tex]\vec{p}_i = 2.4 \ 10^{-3} \ kg \ * 525 \frac{m}{s} \ \hat{i}+ 0.100 \ kg \ * 0[/tex]
[tex]\vec{p}_i = 1.26 \frac{kg \ m}{s} \ \hat{i}[/tex]
Final conditions
The masses will be the same.
Taking the unit vector [tex]\hat{j}[/tex] pointing in the final direction of the bullet, the velocity of the bullet is
[tex]\vec{v}_{b_f} = 315 \frac{m}{s} \ \hat{i}[/tex]
So, the final momentum will be
[tex]\vec{p}_f = 2.4 \ 10^{-3} \ kg \ * 315 \frac{m}{s} \ \hat{j}+ 0.100 \ kg \ * \vec{v}_{s_f}[/tex]
[tex]\vec{p}_f = 0.756 \frac{kg \ m}{s} \ \hat{j}+ 0.100 \ kg \ * \vec{v}_{s_f}[/tex]
Obtaining the velocity
Now, we use
[tex]\vec{p}_i=\vec{p}_f[/tex]
and we obtain
[tex] 1.26 \frac{kg \ m}{s} \ \hat{i} = 0.756 \frac{kg \ m}{s} \ \hat{j}+ 0.100 \ kg \ * \vec{v}_{s_f}[/tex]
working it a little
[tex] 0.100 \ kg \ * \vec{v}_{s_f} = 1.26 \frac{kg \ m}{s} \ \hat{i} - 0.756 \frac{kg \ m}{s} \ \hat{j}[/tex]
[tex] \vec{v}_{s_f} = \frac{(1.26 \frac{kg \ m}{s} , - 0.756 \frac{kg \ m}{s}) }{ 0.100 \ kg}[/tex]
[tex] \vec{v}_{s_f} = (12.6 \frac{m}{s} , - 7.56 \frac{m}{s}) [/tex]
This is the final velocity of the stone. Now, we can obtain the magnitude using the Pythagorean theorem:
[tex]|\vec{v}| = \sqrt{{v}_{x} ^2 + {v}_{y}^2}[/tex]
[tex]|\vec{v}_{s_f}| = \sqrt{(12.6 \frac{m}{s}) ^2 + (- 7.56 \frac{m}{s})^2}[/tex]
[tex]|\vec{v}_{s_f}| = 14.69 \ \frac{m}{s}[/tex]
We can obtain the angle as:
[tex]\theta = arctan(\frac{v_y}{v_x})[/tex]
[tex]\theta = arctan(\frac{ - 7.56 \frac{m}{s} }{ 12.6 \frac{m}{s} })[/tex]
[tex]\theta = - 30 \° 57' 49''[/tex]