Respuesta :
Answer:
A
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = 3, thus
y = 3x + c ← is the partial equation of the line
To find c substitute ( [tex]\frac{2}{3}[/tex], 4) into the partial equation
4 = 2 + c ⇒ c = 4 - 2 = 2
y = 3x + 2 → A
Answer:
A. y = 3x + 2
Step-by-step explanation:
[tex]\left(\dfrac{2}{3};\ 4\right)\to x=\dfrac{2}{3},\ y=4\\\\\text{Put to the each equation:}\\\\A.\ y=3x+2\\\\4=3\left(\dfrac{2}{3}\right)+2\\4=2+2\\4=4\qquad\bold{CORRECT}[/tex]
We do not check other equations because all the lines have the same slope. Therefore, they are parallel lines. If one of the lines passes through a given point, then another cannot pass through that point.
