Answer:
[tex]A=5 m, \omega=81s^{-1}, f=12.89s^{-1}, \lambda=1.16m, v=4.95\frac{m}{s}[/tex] and the wave is traveling in the positive x-direction, since we have a wave function like this, [tex]y(x,t) = A sin(kx - \omega t)[/tex]
Explanation:
A transverse harmonic wave traveling in the x axis is defined by:
[tex]y(x,t) = A sin(kx \pm \omega t \pm \phi)(1)[/tex]
Where A is the amplitude, k the wave number. [tex]\omega[/tex] the angular frequency, [tex]\phi[/tex] the phase constant and the [tex]\pm[/tex] of the term [tex]\omega t[/tex] gives us the direction of propagation
Recall that [tex]\lambda=\frac{2\pi}{k}, f=\frac{\omega}{2\pi}[/tex] and [tex]v=\lambda f[/tex]
Where  [tex]\lambda[/tex] is the wavelength, [tex]f[/tex] the frequency and [tex]v[/tex] the phase velocity.
We have:
[tex]Y(x,t) = 5sin27(0.2x - 3t)\\Y(x,t) = 5sin(5.4x - 81t)[/tex]
So, you can relate our wave function with the general wave function(1):
[tex]\phi=0\\A=5 m\\k=5.4m^{-1}\\ \omega=81s^{-1}\\ f=\frac{81s^{-1}}{2\pi}=12.89s^{-1}\\ \lambda=\frac{2\pi}{5.4m^{-1}}=1.16m\\v=(1.16m)(12.89s^{-1})=14.95\frac{m}{s}[/tex]
The wave is traveling in the positive x-direction, since we have a wave function like this, [tex]y(x,t) = A sin(kx - \omega t)[/tex]