Respuesta :
Answer: [tex](7.321\ , \ 7.599)[/tex]
Step-by-step explanation:
Given : Sample size : n= 400 () large sample
Significance level : [tex]\alpha: 1-0.95=0.05[/tex]
By using Standard normal table , Critical value : [tex]z_{\alpha/2}=1.96[/tex]
Sample mean : [tex]\overline{x}= 7.46[/tex]
Standard deviation: [tex]\sigma=1.42[/tex]
The confidence interval for population means is given by :-
[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
[tex] =7.46\pm(1.96)\dfrac{1.42}{\sqrt{400}}[/tex]
[tex]\approx 7.46\pm0.139=( 7.46-0.139,\ 7.46+0.139)\\\\=(7.321\ , \ 7.599)[/tex]
Hence, the 95 percent confidence interval for the mean percentage share of billing volume from network television for the population of all U.S. advertising agencies = [tex](7.321\ , \ 7.599)[/tex]