Respuesta :
Answer:
sin∠B=0.649°
Step-by-step explanation:
Given: In triangle ABC, c = 8, b = 6, and ∠C = 60°.
To find: sin∠B
Solution: using the sine formula that is [tex]\frac{SinA}{a}=\frac{SinB}{b}=\frac{SinC}{c}[/tex], we get
[tex]\frac{SinA}{a}=\frac{SinB}{6}=\frac{Sin60^{\circ}}{8}[/tex]
Taking the second and third equality, we get
[tex]\frac{SinB}{6}=\frac{Sin60^{\circ}}{8}[/tex]
⇒[tex]\frac{SinB}{6}=\frac{\frac{\sqrt{3}}{2}}{8}[/tex]
⇒[tex]\frac{SinB}{6}=\frac{\sqrt{3}}{16}[/tex]
⇒[tex]SinB=\frac{\sqrt{3}{\times}6}{16}[/tex]
⇒[tex]SinB=\frac{3\sqrt{3}}{8}[/tex]
⇒[tex]SinB=0.649^{\circ}[/tex]
Thus, [tex]SinB=0.649^{\circ}[/tex].
