Answer:
[tex]V=65.4 yd^{3} [/tex]
Step-by-step explanation:
To be able to calculate the sphere's volume, we have to know first what is the sphere's radius. The formula to calculate said volume is:
[tex]V=\frac{4}{3}. \pi . r[/tex]
And the sphere's surface area formula is:
[tex]SA=4. \pi . r^{2}[/tex]
If we know that the value of the area is [tex]25 pi . yd^{2}[/tex] we can sustitute:
[tex]25 pi . yd^{2}=4. \pi . r^{2}[/tex]
Now we can isolate the radius of the sphere.
[tex]\frac{25 pi . yd^{2}}{4. \pi }= r^{2}[/tex]
[tex]\sqrt{\frac{25 pi . yd^{2}}{4. \pi }}=r[/tex]
[tex]\sqrt{\frac{25 pi . yd^{2}}{4. \pi }}=r[/tex]
[tex]\sqrt{6.25 yd^{2}}=r[/tex]
[tex]2,5 yd =r[/tex]
Now that we know the radius we can sustitute it's value on the volume formula, and the result is the volume of the sphere!
[tex]V=\frac{4}{3}. \pi . (2,5 yd)^{3}[/tex]
[tex]V=\frac{4}{3}. \pi . 15.625 yd^{3}[/tex]
[tex]V=65.4 yd^{3} [/tex]