Answer:
[tex]y^5\ =\ \dfrac{e^{2x}}{2}\ +\ \dfrac{7}{2}[/tex]
Step-by-step explanation:
Given,
[tex]\dfrac{dy}{dx}\ =\ \dfrac{e^{2x}}{5y^4}[/tex]
[tex]=>\ 5y^4dy\ =\ e^{2x}dx[/tex]
Integrating on both sides, we have
[tex]\int{5y^4dy}\ =\ \int{e^{2x}dx}[/tex]
[tex]=>5\dfrac{y^5}{5}\ =\ \dfrac{e^{2x}}{2}\ +\ c[/tex]
[tex]=>\ y^5\ =\ \dfrac{e^{2x}}{2}\ +\ c[/tex]
It is given that
y(o) = 4
[tex]=>\ y^{(0)}\ =\ \dfrac{e^{2(0)}}{2}\ +\ c[/tex]
[tex]=>\ 4\ =\ \dfrac{1}{2}\ +\ c[/tex]
[tex]=>\ c\ =\ \dfrac{7}{2}[/tex]
Hence, the complete solution can be given by
[tex]y^5\ =\ \dfrac{e^{2x}}{2}\ +\ \dfrac{7}{2}[/tex]