Respuesta :

Answer:

The smallest xx-intercept is [tex]x = -5[/tex]

The largest xx-intercept is [tex]x = 6[/tex]

The yy-intercept is [tex]y = 30[/tex].

Step-by-step explanation:

Given a quadratic function in the following format:

[tex]f(x) = ax^{2} + bx + c = 0, a \neq 0[/tex]

The x-values of the x-intercepts are [tex]x_{1}, x_{2}[/tex], given by the following formulas.

[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]\bigtriangleup = b^{2} - 4ac[/tex]

We have that:

[tex]f(x) = -x^{2} + x + 30[/tex]

This is not in the format above. I will multiply by (-1), so we have:

[tex]f(x) = x^{2} - x - 30[/tex]

So, [tex]a = 1, b = -1, c = -30[/tex]

[tex]\bigtriangleup = b^{2} - 4ac = (-1)^{2} - 4*(1)*(-30) = 1 + 120 = 121[/tex]

[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a} = \frac{-(-1) + \sqrt{121}}{2(1)} = \frac{12}{2} = 6[/tex]

[tex]x_{2} = \frac{-b + \sqrt{\bigtriangleup}}{2*a} = \frac{-(-1) - \sqrt{121}}{2(1)} = \frac{-10}{2} = -5[/tex]

This means that

The smallest xx-intercept is [tex]x = -5[/tex]

The largest xx-intercept is [tex]x = 6[/tex]

The y-intercept is the value of f(x) when x = 0. So

[tex]f(x)=−x^{2}+x+30[/tex]

[tex]f(0) = 30[/tex]

The yy-intercept is [tex]y = 30[/tex].

ACCESS MORE