Respuesta :
Answer:
The solution of the differential equation is [tex]B=5+25e^{-4t+4}[/tex]
Step-by-step explanation:
The differential equation [tex]\frac{dB}{dt}+4B=20[/tex] is a first order separable ordinary differential equation (ODE). We know this because a separable first-order ODE has the form:
[tex]y'(t)=g(t)\cdot h(y)[/tex]
where g(t) and h(y) are given functions.
We can rewrite our differential equation in the form of a first-order separable ODE in this way:
[tex]\frac{dB}{dt}+4B=20\\\frac{dB}{dt}=20-4B\\\frac{dB}{dt}=4(5-B)\\\frac{1}{5-B}\frac{dB}{dt}=4[/tex]
Integrating both sides
[tex]\frac{1}{5-B}\frac{dB}{dt}=4\\\frac{1}{5-B}\cdot dB=4\cdot dt\\\\\int\limits {\frac{1}{5-B}} \, dB=\int\limits {4} \, dt[/tex]
The integral of left-side is:
[tex]\int\limits {\frac{1}{5-B}} \, dB\\\mathrm{Apply\:u-substitution:}\:u=5-B\\\int\limits {\frac{1}{5-B}} \, dB=\int\limits {\frac{1}{u}} \, dB\\\mathrm{du=-dB}\\-\int\limits {\frac{1}{u}} \,du\\\mathrm{Use\:the\:common\:integral}:\quad \int \frac{1}{u}du=\ln \left(\left|u\right|\right)\\-\int\limits {\frac{1}{u}} \,du =-\ln \left|u\right|\\\mathrm{Substitute\:back}\:u=5-B\\-\ln \left|5-B\right|\\\mathrm{Add\:a\:constant\:to\:the\:solution}\\-\ln \left|5-B\right|+C[/tex]
The integral of right-side is:
[tex]\int\limits {4} \, dt = 4t + C[/tex]
We can join the constants, and this is the implicit general solution
[tex]-\ln \left|5-B\right|+C=4t + C\\-\ln \left|5-B\right|=4t + D[/tex]
If we want to find the explicit general solution of the differential equation
We isolate B
[tex]-\ln \left|5-B\right|=4t + D\\\ln \left|5-B\right|=-4t+D\\\left|5-B\right|=e^{-4t+D}[/tex]
Recall the definition of |x|
[tex]|x|=\left \{ {{x, \:if \>x\geq \>0 } \atop {-x, \:if \>x<\>0}} \right.[/tex]
So
[tex]\left|5-B\right|=e^{-4t+D}\\5-B= \pm \:e^{-4t+D}\\B=5 \pm \:e^{-4t+D}\\B=5\pm \:e^{-4t}\cdot e^{D}\\B=5+Ae^{-4t}[/tex]
where [tex]A=\pm e^{D}[/tex]
Now B(1) =30 implies
[tex]B=5+Ae^{-4t}\\30=5+Ae^{-4}\\30-5=Ae^{-4}\\25e^{4}=A[/tex]
And the solution is
[tex]B=5+(25e^{4})e^{-4t}\\B=5+25e^{-4t+4}[/tex]